skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiao, Zichao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Integrated sensing and communication (ISAC) is emerging as a key technique for next-generation wireless systems. In order to expedite the practical implementation of ISAC in pervasive mobile networks, it is crucial to have widely deployed base stations with radar sensing capabilities. Thus, the utilization of standardized multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) hardware architectures and waveforms is pivotal for realizing seamless integration of effective communication and sensing functionalities. In this paper, we introduce a novel joint anglerange- velocity estimation algorithm for MIMO-OFDM ISAC systems. This approach exclusively depends on the format of conventional MIMO-OFDM waveforms that are widely adopted in wireless communications. Specifically, the angle-range-velocity information of potential targets is jointly extracted by utilizing all the received echo signals within a coherent processing interval (CPI). The proposed joint estimation algorithm can achieve larger signal-to-noise-ratio (SNR) processing gains and higher resolution by fully exploiting the echo signals and jointly estimating the angle-range-velocity information. A theoretical analysis for maximum unambiguous range, resolution, and SNR processing gains is provided to verify the advantages of the proposed joint estimation algorithm. Finally, the results of extensive numerical experiments are presented to demonstrate that the proposed joint estimation approach can achieve significantly lower rootmean- square-error (RMSE) performance for angle/range/velocity estimation for both single- and multi-target scenarios. 
    more » « less